Download Modern Kaluza Klein Theories Book in PDF files, ePub and Kindle Format or read online anytime anywhere directly from your device. Fast download and no annoying ads. You can see the PDF demo, size of the PDF, page numbers, and direct download Free PDF of Modern Kaluza Klein Theories using the download button.

Book Summary: A comprehensive and impressive collection of original and translated papers by Kaluza, Klein, Einstein and others, carefully edited to place them in their historical and intellectual context.

Book Summary: Einstein endorsed the view of Kaluza that gravity could be combined with electromagnetism if the dimensionality of the world is extended from 4 to 5. Klein applied this idea to quantum theory, laying a basis for the various modern versions of string theory. Recently, work by a group of researchers has resulted in a coherent formulation of 5D relativity, in which matter in 4D is induced by geometry in 5D. This theory is based on an unrestricted group of 5D coordinate transformations that leads to new solutions and agreement with the classical tests of relativity. This book collects together the main technical results on 5D relativity, and shows how far we can realize Einstein's vision of physics as geometry.

Book Summary: Einstein endorsed the view of Kaluza that gravity could be combined with electromagnetism if the dimensionality of the world is extended from 4 to 5. Klein applied this idea to quantum theory, laying a basis for the various modern versions of string theory. Recently, work by a group of researchers has resulted in a coherent formulation of 5D relativity, in which matter in 4D is induced by geometry in 5D. This theory is based on an unrestricted group of 5D coordinate transformations that leads to new solutions and agreement with the classical tests of relativity. This book collects together the main technical results on 5D relativity, and shows how far we can realize Einstein''s vision of physics as geometry.

Book Summary: Einstein endorsed the view of Kaluza that gravity could be combined with electromagnetism if the dimensionality of the world is extended from 4 to 5. Klein applied this idea to quantum theory, laying a basis for the various modern versions of string theory. Recently, work by a group of researchers has resulted in a coherent formulation of 5D relativity, in which matter in 4D is induced by geometry in 5D. This theory is based on an unrestricted group of 5D coordinate transformations that leads to new solutions and agreement with the classical tests of relativity. This book collects together the main technical results on 5D relativity, and shows how far we can realize Einstein's vision of physics as geometry

Book Summary: Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectric effect and specific heat, his calculation of radiation fluctuation giving the first statement of wave-particle duality, his introduction of probability in the description of quantum radiative transitions, and finally the quantum statistics and Bose-Einstein condensation. Einstein's special theory of relativity gave us the famous E=mc² relation and the new kinematics leading to the idea of the 4-dimensional spacetime as the arena in which physical events take place. Einstein's geometric theory of gravity, general relativity, extends Newton's theory to time-dependent and strong gravitational fields. It laid the ground work for the study of black holes and cosmology. This is a physics book with material presented in the historical context. We do not stop at Einstein's discovery, but carry the discussion onto some of the later advances: Bell's theorem, quantum field theory, gauge theories and Kaluza-Klein unification in a spacetime with an extra spatial dimension. Accessibility of the material to a modern-day reader is the goal of our presentation. Although the book is written with primarily a physics readership in mind (it can also function as a textbook), enough pedagogical support material is provided that anyone with a solid background in introductory physics can, with some effort, understand a good part of this presentation.

Book Summary: This book is a collection of reprints on the structure of Poincar, anti-de Sitter and conformal supergravity theories in one to eleven dimensions, their anomalies and compactification. Each chapter contains introductory comments and an extensive list of references.

Book Summary: This book introduces the general theory of relativity and includes applications to cosmology. The book provides a thorough introduction to tensor calculus and curved manifolds. After the necessary mathematical tools are introduced, the authors offer a thorough presentation of the theory of relativity. Also included are some advanced topics not previously covered by textbooks, including Kaluza-Klein theory, Israel's formalism and branes. Anisotropic cosmological models are also included. The book contains a large number of new exercises and examples, each with separate headings. The reader will benefit from an updated introduction to general relativity including the most recent developments in cosmology.